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Asymmetric squares as standing waves in Rayleigh-Be´nard convection
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Possibility of thermal convection in the form of asymmetric squares in a thin layer of Boussinesq fluids of
large lateral extension confined between stress-free and conducting flat boundaries is investigated numerically
using a seven mode Lorenz-like model. For fluids with moderate and high Prandtl numbers (4,s,20) and in
a narrow window of high Rayleigh numbers (12,R/Rc,15), which depend on Prandtl number, the stationary
rolls become unstable and asymmetric squares appear as standing waves at the onset of secondary instability.
Asymmetric squares, two-dimensional rolls, and again asymmetric squares with their corners shifted by half a
wavelength form a stable limit cycle. The oscillatory bifurcation is supercritical.

PACS number~s!: 47.20.Ky, 47.27.2i
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Two-dimensional stationary roll patterns are known to
the only stable solutions at the onset of thermal convectio
a thin layer of Boussinesq fluid confined between conduc
boundaries@1#, except in the case of fluids with vanishing
small Prandtl number@2#. The stationary convection in th
form of symmetric square cells are unstable@1# except in
fluids of high Prandtl number (s.10) at very high values o
Rayleigh numberR @3#. Assenheimer and Steinberg@4# ob-
served an interesting possibility of hexagonal convect
cells with both up and down flow in the center of the cell
R approximately twice the value of critical Rayleigh numb
Rc . The possibility of dual types of hexagonal convecti
cells was also established by Clever and Busse@5#. Recently,
Busse and Clever@6# predicted the possibility of stationar
convection in the form of asymmetric square cells with bo
up and down flow in the center at high Rayleigh numb
(3.5,R/Rc,15.7) in a Boussinesq fluid (s57) confined
between rigid and thermally conducting horizontal boun
aries. The asymmetry in square cells was observed in ver
plane.

In this Rapid Communication, we present a theoreti
study of the possibility of asymmetric squares as convec
cells in ordinary fluids in Rayleigh-Be´nard geometry. We are
interested in asymmetry in horizontal layers of fluid rath
than in vertical layers as studied by Busse and Clever@6#.
We construct and study a minimum mode Lorenz-like mo
@7# that describes convection patterns in the form of rolls a
squares, both symmetric as well as asymmetric ones,
thin layer of Boussinesq fluid of moderate and high Pran
numbers (4,s,20). The nonlinear superposition of mutu
ally perpendicular sets of rolls of the same wave num
would be called asymmetric squares when the structure~e.g.,
shadowgraph picture! does not possess fourfold symmetry.
happens when the intensities of the two sets of rolls are
ferent. The model allows us to study any possible com
tetion between rolls and asymmetric squares. In the follo
ing we shall derive the model from hydrodynamic equatio
and investigate the model numerically for possible stable
lutions. We then present the results and discuss them.

We consider an infinite layer of Boussinesq fluid of kin
matic viscosityn, thermal diffusitivity k, and thicknessd
confined between two perfectly conducting horizon
boundaries and heated underneath. Using the thicknessd of
PRE 621063-651X/2000/62~3!/3051~4!/$15.00
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the fluid layer as length scale, the thermal diffusive tim
(5d2/k) as the time scale, and the temperature differe
DT between lower and upper flat boundaries as the temp
ture scale, the nondimensional form of relevant hydrod
namic equations in Boussinesq approximation reads

] t¹
2v35s¹4v31s¹H

2 u2e3•“3@~v•“!v2~v•“!v#,
~1!

“•v50, ~2!

] tu5¹2u1Rv•e32v•“u, ~3!

wherev5(v1 ,v2 ,v3) are the velocity fields,u the deviation
from the conductive temperature profile, andp the deviation
from static pressure of conductive state due to convec
instability.v5“3v is the vorticity, and¹H

2 5]111]22 is the
horizontal Laplacian. Equation~1! is obtained by taking curl
twice of the momentum equation and using the continu
condition @Eq. ~2!#. Prandtl numbers and Rayleigh number
R are defined ass5n/k andR5@a(DT)gd3#/nk, wherea
is the coefficient of thermal expansion of the fluid, andg the
acceleration due to gravity. The unit vectore3 is directed
vertically upward, which is assumed to be the positive dir
tion of x3 axis. The boundary conditions at the stress-fr
conducting flat surfaces implyu5v35]33v350 at x350,1.

We employ the standard Galerkin procedure to desc
the convection patterns at the onset of secondary instab
in fluids with Prandtl numbers.4. The spatial dependenc
of all vertical velocity and temperature field are expanded
a Fourier series, which is compatible with the stress-free
conducting boundaries and periodic boundary conditions
the horizontal plane. As we are interested in studying squ
cell convection, we restrict ourselves to standing patte
and, hence all time-dependent Fourier amplitudes will be
sumed to be real. The expansions for all the fields are tr
cated to describe straight cylindrical rolls and patterns a
ing from the nonlinear superposition of mutual
perpendicular set of rolls of the same wave to number. P
turbative fields with the same wavelength in mutually p
pendicular directions are likely to occur in small aspect ra
square containers. The vertical velocityv3 andu then read as
R3051 ©2000 The American Physical Society
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v35@W101~ t !coskx11W011~ t !coskx2#sinpx3

1W112~ t !coskx1coskx2sin 2px3 , ~4!

u5@Q101~ t !coskx11Q011~ t !coskx2#sinpx3

1Q112~ t !coskx1coskx2sin 2px31Q002~ t !sin 2px3 .

~5!

The horizontal components of the velocity field can easily
computed using the equation of continuity. Projecting Eq.~4!
for v3 and the equation foru @Eq. ~3!# on above modes, we
arrive at the following seven mode Lorenz-like model

tẊ5s@2q̂2X1~ k̂2/q̂2!Y#1~X2 ,X1!T S, ~6!

tẎ52q̂2Y1~r 2Z!X1~X2 ,X1!T T, ~7!

tṠ522sd̂2S1s~ k̂2/d̂2!T2~ q̂2/2d̂2!X1X2 , ~8!

tṪ522d̂2T1rS2~X1Y21X2Y1!/4, ~9!

tŻ52bZ1X•Y, ~10!

where the linear modes

X[~X1 ,X2!T5p/A2qc
2~W101,W011!

T

and

Y[~Y1 ,Y2!T5pkc
2/A2qc

6~Q101,Q011!
T

represent the vertical velocity and the temperature field
spectively. The nonlinear modeZ5(2pkc

2/qc
6)Q002 denotes

heat flux across the fluid layer. ModesS5(p/4qc
2)W112 and

T5(pkc
2/4qc

6)Q112 are essential to describe nonlinear co
pling between two sets of mutually perpendicular rolls. T
model, thus, consists of minimum numbers of modes
quired to describe straight rolls and squares. The parame
defined by q25p21k2, q̂25q2/qc

2 , k̂25k2/kc
2 , and d̂2

5(2p21k2)/qc
2 are, in general, wave number depende

while other parameters given bykc
25p2/2, qc

25p2

1kc
2 , t51/qc

2 , andb54p2/qc
2 are constants in the mode

The reduced Rayleigh numberr 5Rkc
2/qc

6 is the control pa-
rameter of the problem. We set, hereafter,k5kc , the wave
number of stationary rolls at the onset of primary instabili
This makesk̂25q̂251, d̂25 5

3 and b5 8
3 in our model for

convection.
The steady two-dimensional~2D! rolls parallel to thex1

axis are given byX1505Y1. This makes the nonlinea
modesS and T decouple from the system. Our model th
reduces to well known Lorenz model with steady solutio
given byX25Y25Ab(r 21) andZ5r 21. However, these
solutions become unstable at much lower values of redu
Rayleigh numberr than that predicted by the original Loren
model@7#. The lower curve in Fig. 1 shows the critical valu
r o of reduced Rayleigh number, at which the 2D rolls b
come unstable, as a function of the Prandtl numbers. The
critical valuer o increases with increasings. The steady and
perfect squares are obtained by settingX1

25X2
2 in our model.
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Such solutions exist in our model, which is valid for 1,r

,r o(,4d̂2). However, they are found to be always u
stable.

We study the time-dependent solutions by numerically
tegrating our model. We investigate the dynamics of the p
terns as a function of increasingr in two ways: first by using
the data from previous solution as initial conditions for
new r, and second by choosing randomly small values of
variables as initial conditions. We get the same result w
suitably chosen initial conditions. Forr o,r ,r ir ~see Fig. 1!,
we find oscillatory solutions. The stationary rolls becom
unstable and a new set of rolls perpendicular of the old
develops asr is raised abover 0. The competition between
these two sets of rolls leads to a time periodic sequenc
rolls and patterns arising from nonlinear superposition of t
sets of rolls. Forr .r ir , the solutions of the model becom
irregular, indicating more modes may be required to stu
this regime of parameter space. Higher order modes in
horizontal plane may distort the pattern without contributi
significantly to the transport of heat across the fluid lay

FIG. 2. Convective amplitudesX2 ~the uppermost curve! andX1

~the lowermost curve! of new and old sets of rolls respectively wit
respect to time forr 513.5 ands57. The time period of the new
set of rolls is always double that for the old set of rolls, whi
became stable. The Nusselt number of the model~solid curve in the
middle! shows the oscillating behavior and its mean value is wit
8% of the Nusselt number reported by direct simulation~dotted
line! of Busse and Clever@6# with ‘‘no-slip’’ conditions.

FIG. 1. Region ofr and s space showing rolls, asymmetri
squares, and irregular solutions. The lower curve shows the va
of reduced Rayleigh numberr o above which 2D rolls become un
stable and time periodic asymmetric squares appear. The u
curve corresponds to the onset of chaotic solutions in the mod
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Our simple model does not include higher order mod
which might be essential asr is raised much abover 0. This
may be the cause of irregular behavior at higher values or.

Figure 2 shows the temporal behavior of the amplitudeX1
of the new set of rolls as well as the amplitudeX2 of the old
set of rolls. WhileX1 oscillates with zero mean,X2 oscillates
around a finite value. The time period ofX1 is always double
of that of X2. In fact, all the modes (X1 ,Y1 ,S,T) that de-
velop at r .r o oscillate with same period and with zer
mean. The periods ofY2 and Z are the same as that ofX2.
The Nusselt number~the solid curve in the middle! predicted
by the seven mode model is also compared with that of
same obtained by direct numerical simulation for Boussi
fluids confined between two flat rigid boundaries in Fig.
The mean of the Nusselt number of the seven mode mod
within 8% of the Nusselt number~dotted line! obtained by
direct numerical simulation of Ref.@6# for s57.

The periodic solution arises via supercritical Hopf bifu
cation with amplitude of the oscillating mode with nonze
mean~e.g.,X2) scales asA(r 2r 0). The frequency of oscil-
lation is finite at the onset of secondary instability. The f
quencyf 51/T of oscillation of the modeX2 at the onset of
oscillatory instability increases with increasing Prandtl nu
ber~see Fig. 3!. The mean of oscillating amplitude of 2D ro
mode (X2) decreases and the perturbative amplitude (X1)
increases with increasingr. Figure 4 shows two shadow
graphs of the standing wave patterns in the form of asy
metric squares forr o,r ,r ir . The intensity of old 2D rolls
decreases when a new set of rolls perpendicular to the
one appears. While the spatial positions for up and do
flows in the old set remain fixed, these positions alternate
new set of rolls. Consequently, the corner positions of squ
patterns slide back and forth along the set of old rolls. T
standing waves in form of square patterns do not h
fourfold symmetry, although they preserve inversion symm
try. The time periodic appearances of asymmetric squa
2D rolls, asymmetric squares again with shifted positions
the maximum up or down flows by half a wavelength, a
2D rolls form a limit cycle. Although the competetion be
tween rolls and symmetric squares is known in binary m
tures @8, 9#, the time periodic sequence of asymmet
squares and two-dimensional rolls in pure fluids is qual
tively new.

FIG. 3. Plot of the frequencyf 51/T of the amplitudeX2 as a
function of Prandtl numbers at the onset of secondary instability
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We now test the stability of this limit cycle by introducin
the vertical vorticity in the model. We expand the vertic
vorticity v3 in Fourier modesz101, z011, andz110. Simul-
taneously, for the consistency of the model, we add a m
W1̄1̄2 in the expansion of vertical velocityv3, and a similar
mode Q 1̄1̄2 in the expansion of temperature fieldu. This
makes a Lorenz-like model consisting of twelve modes. T
results of this model for fluids withs.4 exactly reproduces
the results of the seven mode model discussed earlier.
s,2, vertical vorticity is excited at the onset of seconda
instability. Fors.4 and perturbations of wave number sam
as that of 2D rolls, we always see a stable limit cycle. W
have also checked the results for test cases fors510 by
direct numerical simulation of 3D Boussinesq equations
the case of free-slip boundary conditions. This is done
using Galerkin technique with wave number set equal tokc .
The spatial resolution is chosen compatible with low asp
ratio containers. The results of two methods are in go
agreement for values orr just above the onset of seconda
instabilities~i.e., above the solid curve of Fig. 1!. The mean
of Nusselt number predicted by the model is within 8%
the same obtained from the simulation. Many higher or

FIG. 4. Shadowgraphs of asymmetric squares at timet and t
1T/2 for r 514.7 ands510.
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modes develop asr is raised much abover o without chang-
ing the mean Nusselt number significantly for the test ca
The results of our model indicates that for moderate and h
Prandtl number fluids (4,s,20) enclosed preferably in
small aspect ratio square container, the time periodic com
tition between the asymmetric squares and rolls may be
alizable close to the onset of secondary instability in a n
row range of relatively high Rayleigh numbers (12,r
lu
s.
h

e-
e-
r-

,15). The range of Rayleigh numbers depends on
Prandtl number of the fluid. In addition, the model represe
a simple dynamical system to study competetion betw
asymmertic squares and straight rolls.
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