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Asymmetric squares as standing waves in Rayleigh-Bard convection
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Possibility of thermal convection in the form of asymmetric squares in a thin layer of Boussinesq fluids of
large lateral extension confined between stress-free and conducting flat boundaries is investigated numerically
using a seven mode Lorenz-like model. For fluids with moderate and high Prandtl numkars(20) and in
a narrow window of high Rayleigh numbers @R®/R.<15), which depend on Prandtl number, the stationary
rolls become unstable and asymmetric squares appear as standing waves at the onset of secondary instability.
Asymmetric squares, two-dimensional rolls, and again asymmetric squares with their corners shifted by half a
wavelength form a stable limit cycle. The oscillatory bifurcation is supercritical.

PACS numbdss): 47.20.Ky, 47.27-i

Two-dimensional stationary roll patterns are known to bethe fluid layer as length scale, the thermal diffusive time
the only stable solutions at the onset of thermal convection if=d? «) as the time scale, and the temperature difference
a thin layer of Boussinesq fluid confined between conductingA T between lower and upper flat boundaries as the tempera-
boundarieg 1], except in the case of fluids with vanishingly ture scale, the nondimensional form of relevant hydrody-
small Prandtl numbef2]. The stationary convection in the namic equations in Boussinesq approximation reads
form of symmetric square cells are unstabld except in
fluids of high Prandtl numbers>10) at very high values of 3,V2vz=0V4,+ gvﬁe—eS. VX[(w-V)v—(v-V)w],

Rayleigh numbeR [3]. Assenheimer and Steinbefd] ob- (1)
served an interesting possibility of hexagonal convective
cells with both up and down flow in the center of the cell at V.v=0, )

R approximately twice the value of critical Rayleigh number
R.. The possibility of dual types of hexagonal convective
cells was also established by Clever and Bus$eRecently,
Busse and Clevdi6] predicted the possibility of stationary
convection in the form of asymmetric square cells with bothwherev=(v1,v,,v3) are the velocity fieldsg the deviation
up and down flow in the center at high Rayleigh numbergrom the conductive temperature profile, gmthe deviation
(3.5<R/R.<15.7) in a Boussinesq fluida(=7) confined from static pressure of conductive state due to convective
between rigid and thermally conducting horizontal bound-instability. = Vv is the vorticity, andV = dy;+ dp, is the
aries. The asymmetry in square cells was observed in verticélorizontal Laplacian. Equatiofi) is obtained by taking curl
plane. twice of the momentum equation and using the continuity
In this Rapid Communication, we present a theoreticalcondition[Eq. (2)]. Prandtl numberr and Rayleigh number
study of the possibility of asymmetric squares as convectivi are defined as'= v/x andR=[«(AT)gd*]/v«, wherea
cells in ordinary fluids in Rayleigh-Berd geometry. We are is the coefficient of thermal expansion of the fluid, anthe
interested in asymmetry in horizontal layers of fluid ratheracceleration due to gravity. The unit vectey is directed
than in vertical layers as studied by Busse and Cl¢@gr  vertically upward, which is assumed to be the positive direc-
We construct and study a minimum mode Lorenz-like modelion of x5 axis. The boundary conditions at the stress-free
[7] that describes convection patterns in the form of rolls ancconducting flat surfaces impl§=v3;=dz3v3=0 atx3=0,1.
squares, both symmetric as well as asymmetric ones, in a We employ the standard Galerkin procedure to describe
thin layer of Boussinesq fluid of moderate and high Prandtthe convection patterns at the onset of secondary instability
numbers (4 o< 20). The nonlinear superposition of mutu- in fluids with Prandtl numbeo>4. The spatial dependence
ally perpendicular sets of rolls of the same wave numbenf all vertical velocity and temperature field are expanded in
would be called asymmetric squares when the structige,  a Fourier series, which is compatible with the stress-free flat
shadowgraph pictujeloes not possess fourfold symmetry. It conducting boundaries and periodic boundary conditions in
happens when the intensities of the two sets of rolls are difthe horizontal plane. As we are interested in studying square
ferent. The model allows us to study any possible compeeell convection, we restrict ourselves to standing patterns
tetion between rolls and asymmetric squares. In the followand, hence all time-dependent Fourier amplitudes will be as-
ing we shall derive the model from hydrodynamic equationssumed to be real. The expansions for all the fields are trun-
and investigate the model numerically for possible stable soeated to describe straight cylindrical rolls and patterns aris-
lutions. We then present the results and discuss them. ing from the nonlinear superposition of mutually
We consider an infinite layer of Boussinesq fluid of kine- perpendicular set of rolls of the same wave to number. Per-
matic viscosity v, thermal diffusitivity x, and thicknesdd  turbative fields with the same wavelength in mutually per-
confined between two perfectly conducting horizontalpendicular directions are likely to occur in small aspect ratio
boundaries and heated underneath. Using the thickshe$s square containers. The vertical veloaityand § then read as

3,6=V?0+Rv-e;— V-V, 3
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V3= [WlOl(t)COSkX1+ WOll(t)COSkXZ:lSin X3 16

+ W), A t)coskx, coskx,Sin 27X, (4) 15

0=[ 0 11(t)coskx; + O ¢q4(t)coskx,]sin mx5 14

+ 0 11o(1)coSkX1COSKX,Sin 27mX3+ O goA 1) Sin 27X3. -
The horizontal components of the velocity field can easily be 12
computed using the equation of continuity. Projecting @4. .
for v; and the equation foé [Eqg. (3)] on above modes, we 11 b— ! . !
arrive at the following seven mode Lorenz-like model 4 6 8 10 12

(o)
v A2 2,02 T
TX=0[ = q"X+(KT/a)Y]+(X2. X)) " S, 6) FIG. 1. Region ofr and o space showing rolls, asymmetric

squares, and irregular solutions. The lower curve shows the values

Y =—PY+(r—=2)X+ (X2, X" T, (7)  of reduced Rayleigh numbeg, above which 2D rolls become un-
stable and time periodic asymmetric squares appear. The upper
7S=—200d%S+ o( Rzlaz)T—(a2/2az)Xlx2, (8) curve corresponds to the onset of chaotic solutions in the model.
T= —282T+rS—(X1Y2+X2Y1)/4, (9) Such solutions exist in our model, which is valid foxt
<ro(<4d?). However, they are found to be always un-
7Z=—bZ+X-Y, (10 ~ Stable. , , _—
We study the time-dependent solutions by numerically in-
where the linear modes tegrating our model. We investigate the dynamics of the pat-
terns as a function of increasimgn two ways: first by using
X=(X1,Xy) "= 77/\/§q§(wml,w01])T the data from previous solution as initial conditions for a
newr, and second by choosing randomly small values of all
and variables as initial conditions. We get the same result with
suitably chosen initial conditions. Fog<<r <r;, (see Fig. 1,
Y=(Y,,Yy) = 77-k§/ﬁqﬁ(@ml,@m])T we find oscillatory solutions. The stationary rolls become

unstable and a new set of rolls perpendicular of the old one
represent the vertical velocity and the temperature field redevelops as is raised above,. The competition between
spectively. The nonlinear mode= (— wkglqg)(%oz denotes these two sets of rolls leads to a time periodic sequence of
heat flux across the fluid layer. Mod8&s= (7/4g%)W,;,and  rolls and patterns arising from nonlinear superposition of two
T:(ﬂ-kg/4qg)®112 are essential to describe nonlinear cou-sets of rolls. For>r,,, the solutions of the model become
pling between two sets of mutually perpendicular rolls. Theifregular, indicating more modes may be required to study
model, thus, consists of minimum numbers of modes rethis regime of parameter space. Higher order modes in the

quired to describe straight rolls and squares. The parameteh®rizontal plane may distort the pattern without contributing
defined by q?=m2+k?, 92=q?q?, k?=k2/k?, and 42 significantly to the transport of heat across the fluid layer.
) c? ()

=(27%+k?)/q? are, in general, wave number dependent, o

while other parameters given byk2=?/2, q2= 2 I e
+k2, r=1/g%, andb=47?/q? are constants in the model. i
The reduced Rayleigh number RK/q¢ is the control pa- . 4l
rameter of the problem. We set, hereafter; k., the wave Y
number of stationary rolls at the onset of primary instability. = i
This makesk?=g?=1, d?=% andb=2¢ in our model for % 2
convection. 4 | Nu-1
The steady two-dimension#&2D) rolls parallel to thex;
axis are given byX;=0=Y;. This makes the nonlinear of X,
modesS and T decouple from the system. Our model then , , ’
reduces to well known Lorenz model with steady solutions t t+2T t+4T

given by X,=Y,=+b(r—1) andZ=r—1. However, these
SOlu“an become unstable at ”.‘“Ch lower Va'.“‘?s of reduce(qhe lowermost curveof new and old sets of rolls respectively with
Rayleigh number than that .pre<.j|cted by the orlgmal Lorenz respect to time for=13.5 ando=7. The time period of the new
model[7]. The lower curve in Fig. 1 shows the critical value et of rolis is always double that for the old set of rolls, which
ro of reduced Rayleigh number, at which the 2D rolls be-pecame stable. The Nusselt number of the méstelld curve in the
come unstable, as a function of the Prandtl numbeiThe  middle) shows the oscillating behavior and its mean value is within
critical valuer, increases with increasing. The steady and 8% of the Nusselt number reported by direct simulatidotted
perfect squares are obtained by settifg= X3 in our model.  line) of Busse and Clevei6] with “no-slip” conditions.

FIG. 2. Convective amplitudes, (the uppermost curyeandX;
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FIG. 3. Plot of the frequenctg 1/T of the amplitudeX, as a
function of Prandtl numbes at the onset of secondary instability.

(a)

Our simple model does not include higher order modes,
which might be essential asis raised much above,. This
may be the cause of irregular behavior at higher values of

Figure 2 shows the temporal behavior of the amplitXde
of the new set of rolls as well as the amplitude of the old
set of rolls. WhileX; oscillates with zero meatX, oscillates
around a finite value. The time period Xf is always double
of that of X,. In fact, all the modesX,,Y;,S,T) that de-
velop atr>r, oscillate with same period and with zero
mean. The periods of , andZ are the same as that %,.
The Nusselt numbdihe solid curve in the midd)epredicted
by the seven mode model is also compared with that of the
same obtained by direct numerical simulation for Boussinsq
fluids confined between two flat rigid boundaries in Fig. 2.
The mean of the Nusselt number of the seven mode model is
within 8% of the Nusselt numbedotted ling obtained by
direct numerical simulation of Ref6] for o=7. (b)

The periodic solution arises via supercritical Hopf bifur-
cation with amplitude of the oscillating mode with nonzero  FIG. 4. Shadowgraphs of asymmetric squares at tiraed t
mean(e.g.,X,) scales as/(r —ro). The frequency of oscil- +T/2 forr=14.7 ando=10.
lation is finite at the onset of secondary instability. The fre-
guencyf=1/T of oscillation of the modeX, at the onset of We now test the stability of this limit cycle by introducing
oscillatory instability increases with increasing Prandtl num-the vertical vorticity in the model. We expand the vertical
ber (see Fig. 3 The mean of oscillating amplitude of 2D roll vorticity w3 in Fourier modes1o;, o121, and{y5. Simul-
mode (X,) decreases and the perturbative amplitudg)( taneously, for the consistency of the model, we add a mode
increases with increasing Figure 4 shows two shadow- Wiz in the expansion of vertical velocitys, and a similar
graphs of the standing wave patterns in the form of asymmode G717, in the expansion of temperature fiel This
metric squares for,<r<r;, . The intensity of old 2D rolls makes a Lorenz-like model consisting of twelve modes. The
decreases when a new set of rolls perpendicular to the olegsults of this model for fluids witr>4 exactly reproduces
one appears. While the spatial positions for up and dowithe results of the seven mode model discussed earlier. For
flows in the old set remain fixed, these positions alternate for<<2, vertical vorticity is excited at the onset of secondary
new set of rolls. Consequently, the corner positions of squaristability. Foro>4 and perturbations of wave number same
patterns slide back and forth along the set of old rolls. Theas that of 2D rolls, we always see a stable limit cycle. We
standing waves in form of square patterns do not havdiave also checked the results for test casesoferl0 by
fourfold symmetry, although they preserve inversion symmedirect numerical simulation of 3D Boussinesq equations for
try. The time periodic appearances of asymmetric squareshe case of free-slip boundary conditions. This is done by
2D rolls, asymmetric squares again with shifted positions ofusing Galerkin technique with wave number set equ#l.to
the maximum up or down flows by half a wavelength, andThe spatial resolution is chosen compatible with low aspect
2D rolls form a limit cycle. Although the competetion be- ratio containers. The results of two methods are in good
tween rolls and symmetric squares is known in binary mix-agreement for values arjust above the onset of secondary
tures [8, 9|, the time periodic sequence of asymmetricinstabilities(i.e., above the solid curve of Fig).IThe mean
squares and two-dimensional rolls in pure fluids is qualita-of Nusselt number predicted by the model is within 8% of
tively new. the same obtained from the simulation. Many higher order
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modes develop asis raised much above, without chang- <15). The range of Rayleigh numbers depends on the
ing the mean Nusselt number significantly for the test caserandtl number of the fluid. In addition, the model represents
The results of our model indicates that for moderate and higla simple dynamical system to study competetion between
Prandtl number fluids (4 0<20) enclosed preferably in a asymmertic squares and straight rolls.

small aspect ratio square container, the time periodic compe-

tition between the asymmetric squares and rolls may be re- We acknowledge support from DST, India. Ujjal Ghosal,
alizable close to the onset of secondary instability in a narfrom IIT, Kharagpur, acknowledges partial support from IS,
row range of relatively high Rayleigh numbers &  Calcutta.
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